Enzyme-catalyzed gel formation of gelatin and chitosan: potential for in situ applications.

نویسندگان

  • Tianhong Chen
  • Heather D Embree
  • Eleanor M Brown
  • Maryann M Taylor
  • Gregory F Payne
چکیده

We compared the ability of two enzymes to catalyze the formation of gels from solutions of gelatin and chitosan. A microbial transglutaminase, currently under investigation for food applications, was observed to catalyze the formation of strong and permanent gels from gelatin solutions. Chitosan was not required for transglutaminase-catalyzed gel formation, although gel formation was faster, and the resulting gels were stronger if reactions were performed in the presence of this polysaccharide. Consistent with transglutaminase's ability to covalently crosslink proteins, we observed that the transglutaminase-catalyzed gelatin-chitosan gels lost the ability to undergo thermally reversible transitions (i.e. sol-gel transitions) characteristic of gelatin. Mushroom tyrosinase was also observed to catalyze gel formation for gelatin-chitosan blends. In contrast to transglutaminase, tyrosinase-catalyzed reactions did not lead to gel formation unless chitosan was present (i.e. chitosan is required for tyrosinase-catalyzed gel formation). Tyrosinase-catalyzed gelatin-chitosan gels were observed to be considerably weaker than transglutaminase-catalyzed gels. Tyrosinase-catalyzed gels were strengthened by cooling below gelatin's gel-point, which suggests that gelatin's ability to undergo a collagen-like coil-to-helix transition is unaffected by tyrosinase-catalyzed reactions. Further, tyrosinase-catalyzed gelatin-chitosan gels were transient as their strength (i.e. elastic modulus) peaked at about 5h after which the gels broke spontaneously over the course of 2 days. The strength of both transglutaminase-catalyzed and tyrosinase-catalyzed gels could be adjusted by altering the gelatin and chitosan compositions. Potential applications of these gels for in situ applications are discussed.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Synthesis and Characterization of an Enzyme Mediated in situ Forming Hydrogel Based on Gum Tragacanth for Biomedical Applications

Background: The excellent biocompatibility, biodegradability and biological properties of the hydrogels, fabricated using natural polymers, especially polysaccharides, are very advantageous for biomedical applications. Gum tragacanth (GT) is a heterogeneous highly branched anionic polysaccharide, which has been used extensively in food and pharmaceutical industries. Despite,  its desirable prop...

متن کامل

Electrospun biocompatible Gelatin-Chitosan/Polycaprolactone/Hydroxyapatite nanocomposite scaffold for bone tissue engineering

In recent years, nanocomposite scaffolds made of bioactive polymers have found multiple applications in bone tissue engineering. In this study composite nanofibrous structure of gelatin (Gel)/chitosan (Cs)-polycaprolactone (PCL) containing hydroxyapatite (HA) were fabricated using co-electrospinning process. To assay the biocompatibility and bioactivity of electrospun nanocomposite scaffolds, t...

متن کامل

Electrospun biocompatible Gelatin-Chitosan/Polycaprolactone/Hydroxyapatite nanocomposite scaffold for bone tissue engineering

In recent years, nanocomposite scaffolds made of bioactive polymers have found multiple applications in bone tissue engineering. In this study composite nanofibrous structure of gelatin (Gel)/chitosan (Cs)-polycaprolactone (PCL) containing hydroxyapatite (HA) were fabricated using co-electrospinning process. To assay the biocompatibility and bioactivity of electrospun nanocomposite scaffolds, t...

متن کامل

Norfloxacin loaded pH triggered nanoparticulate in situ gel for extraocular bacterial infections: Optimization, ocular irritancy and corneal toxicity

In order to achieve prolong corneal contact time of norfloxacin(NFX) for treatment of extra ocular diseases, a pH triggered nanoparticulate in situ gelling system was designed to explore dual advantage of nanoparticles and in situ gelling system, for its ocular delivery. NFX loaded nanocarriers were developed by ionotropic gelation technique using chitosan as a matrix forming polymer, cross-lin...

متن کامل

Norfloxacin loaded pH triggered nanoparticulate in situ gel for extraocular bacterial infections: Optimization, ocular irritancy and corneal toxicity

In order to achieve prolong corneal contact time of norfloxacin(NFX) for treatment of extra ocular diseases, a pH triggered nanoparticulate in situ gelling system was designed to explore dual advantage of nanoparticles and in situ gelling system, for its ocular delivery. NFX loaded nanocarriers were developed by ionotropic gelation technique using chitosan as a matrix forming polymer, cross-lin...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Biomaterials

دوره 24 17  شماره 

صفحات  -

تاریخ انتشار 2003